適応性 & リアルタイム
AI 推論の高速化

概要

エッジからクラウドまでに対応する AI 推論

Vitis™ AI は、AMD のデバイス、ボード、Alveo™ データセンター アクセラレーション カードを使用する包括的な AI 推論開発プラットフォームです。豊富な AI モデル、最適化された DPU (深層学習プロセッシング ユニット) コア、ツール、ライブラリ、サンプル デザインを利用でき、エッジからデータセンターまでの幅広いアプリケーションに対応できます。Vitis AI は、高い効率性と使いやすさを考えて設計されており、ザイリンクス FPGA および適応型 SoC での AI アクセラレーションや深層学習の性能を最大限に引き出すことができます。

Vitis AI の運用

図 1 - Vitis AI の構造

Vitis AI プラットフォームを使用する開発のメリット

  • 多様な深層学習タスク、CNN、RNN、NLP に対応できる主要フレームワークと最新モデルをサポート
  • クオンタイザーおよびオプティマイザー ツールを使用して、モデルの精度や処理効率を最適化
  • シンプルなコンパイル フローと高レベル API を使用して、カスタム モデルの迅速な運用が可能
  • 高効率でカスタマイズ可能な DPU コアを使用して、スループット、レイテンシ、消費電力など、エッジやクラウドのさまざまな要件に対応可能

Vitis AI がもたらす可能性

Vitis AI Model Zoo

図 2 - Model Zoo

AI Model Zoo

AI Model Zoo は、すべてのユーザーを対象とする最も人気のあるフレームワーク (Tensorflow、Caffe、Pytorch) で構築した、すぐに使える深層学習モデルを豊富に提供しています。この AI Model Zoo では、最適化済みの再トレーニング可能な AI モデルを提供しています。これらを利用することで、AMD プラットフォーム上で効率的に AI 開発が可能になり、高速化されたデザインをすばやく構築して製品化できます。


AI オプティマイザー

優れたモデル圧縮技術により、AI オプティマイザーで精度への影響を最小限に抑えながら、複雑なモデルを 1/5 から最大 1/50 まで圧縮できます。Deep Compression で次世代レベルの AI 推論性能が実現します。

AI オプティマイザーのブロック図

図 3 - Vitis AI オプティマイザー


AI クオンタイザーのブロック図

図 4 - Vitis AI クオンタイザー

AI クオンタイザー

カスタム演算子の検査、量子化、キャリブレーション、微調整、および浮動小数点モデルから固定小数点モデルへの変換などのプロセスによって、狭いメモリ帯域幅で、より高速かつ高効率な演算処理が可能になります。


AI コンパイラ

AI コンパイラは、AI モデルを効率の高い命令セットとデータフローにマップします。また、レイヤーの融合や命令スケジューリングなどの高度な最適化を実行し、オンチップ メモリを可能な限り再利用します。

AI コンパイラのブロック図

図 5 - Vitis AI コンパイラ


AI プロファイラーのブロック図

図 6 - Vitis AI プロファイラー

AI プロファイラー

パフォーマンス プロファイラーでは、AI 推論実装における効率性と使用率を詳細に分析できます。


AI ライブラリ

Vitis AI ライブラリは、DPU コアを使用して効率的な AI 推論を実現するために構築された高レベルのライブラリと API です。統合 API を備える Vitis AI ランタイム (VART) をベースに構築されており、AMD プラットフォームで AI モデルを運用するのに最適なインターフェイスを提供します。

AI ライブラリのブロック図

図 7 - Vitis AI ライブラリ


Whole Graphic Optimizer (WeGO) ブロック図

図 8 - Vitis AI コンパイラ

WeGO (Whole Graphic Optimizer)

WeGO フレームワーク対応の推論フローは、ネイティブの Pytorch または Tensorflow フレームワークを活用して学習から推論までのシンプルなパスを提供します。DPU でサポートされていない演算子を CPU にマップすることでクラウド DPU 上でのモデルの運用や評価を大幅に高速化できます。


深層学習プロセッシング ユニット (DPU)

DPU (Deep-Learning Processor Unit)

DPU とは、急速に進化する AI アルゴリズム CNN、RNN、NLP に対応できる適応型のドメイン固有アーキテクチャ (DSA) であり、Zynq™ SoC、Zynq UltraScale+™ MPSoC、Alveo データセンター アクセラレータ カード、および Versal ACAP に実装することで、業界最高クラスの性能を達成できます。

ザイリンクス DPU のブロック図

図 9 - Vitis AI DPU

運用
kria-board

エッジで運用

Vitis™ AI プラットフォームは、エッジ デバイス向けの最適なアルゴリズムを提供することで高性能コンピューティングを実現できる上、運用時の柔軟性向上と省電力化も可能になります。自動車、産業、医療、ビデオ解析など、一般的なエッジ アプリケーションに高い演算性能をもたらします。

AMD およびパートナーのエッジ プラットフォームを表示 >


alveo

オンプレミスで運用

AMD の Alveo™ データセンター アクセラレータ カードで Vitis AI を活用することで、CNN、RNN、NLP などのさまざまなワークロードに対して競争力の高い AI 推論性能を実現できます。これらのオンプレミス AI ソリューションは、最先端データセンターで求められる超低レイテンシかつ高スループットを実現し、柔軟性を備えることができます。CPU や GPU よりも高い演算性能を提供し、TCO も削減できます。

アクセラレータ カードの選択 >


1592258132635
vmaccel-gray-tile.png

クラウドで運用

AMD は、AWS や VMAccel などのパブリック クラウド サービス プロバイダーと連携することで、FPGA や Versal™ ACAP クラウド インスタンスへのリモート アクセスを可能にしています。これにより、ローカルにハードウェアやソフトウェアがなくても、すばやく簡単にモデルを構築して運用できます。

資料

Vitis AI プラットフォーム資料

モデル、ツール、深層学習プロセッシング ユニット (DPU) など、Vitis™ AI プラットフォームを使用する開発に役立つ豊富な資料を提供しています。

次のリンクから資料をご覧いただくか、またはすべての Vitis AI プラットフォーム資料を資料ポータルでご覧ください。

デフォルト デフォルト タイトル ドキュメント タイプ 日付
ソリューション

自動運転および ADAS 技術を強化

リアルタイム マルチクラス 3D 物体認識

リアルタイム マルチクラス 3D 物体認識

Vitis™ AI 環境では、エンベデッド プラットフォームに 3D 知覚の AI アルゴリズムを実装することで、リアルタイム処理を実現できます。HW と SW の協調最適化により、ザイリンクスの Zynq® UltraScale+™ MPSoC で最先端 PointPillars モデルの性能を最大限に引き出します。

ビデオを表示  >


自動運転向けの超低レイテンシ アプリケーション

自動運転車が高速で走行し、障害物に遭遇するとき、レイテンシは意思決定において致命的な要素となります。革新的な特定用途向けのアクセラレータと最適化済みソフトウェアを利用できる Vitis AI 環境では、高性能でありながら超低レイテンシで深層学習アルゴリズムを処理する自動運転車向けのアプリケーションを実現できます。

ザイリンクス自動運転 (AD) の詳細  >

自動運転車向けの超低レイテンシ アプリケーション

物体検出とセグメンテーション

物体検出とセグメンテーション

ローエンドからハイエンドまでのあらゆる ADAS 製品に適合する優れた拡張性と適応性を提供する Vitis AI では、フロント ADAS、インキャビン、サラウンド ビュー システムにおけるオブジェクト検出、車線検出、セグメンテーションの一般的な AI アルゴリズムを提供し、業界最高性能を実現できます。

ザイリンクス ADAS の詳細  >


よりスマートで安全な街を創る

ビデオ解析

都市部では、エッジ ポイントやクラウド エンドでインテリジェンス機能を備えたシステムを導入するようになりました。大量のデータが毎日生成されるようになり、物体、トラフィック、顔の動きをすばやく検出して処理するためには、エンドツーエンドの高性能 AI 分析システムが必要です。これにより、エッジからクラウドまでの各フレームに有益なインサイトを追加します。

ザイリンクスのマシンおよびコンピューター ビジョンの詳細 >

ビデオ解析

AI 機能による革新的なヘルスシステムの実現

COVID-19 画像検出を高速化

画像処理、診断、治療用機器向けの AI

Vitis AI は、医用画像データに潜むパターンを検出して特定し、病気の克服や健康向上に役立つ画期的なツールおよび IP を提供します。 

ザイリンクス ヘルスケア AI の詳細 > 


オンプレミスおよびデータセンターの AI

データセンター アクセラレーション

インターネット アプリケーション、画像/ビデオ処理、ライブ放送、レコメンデーション エンジン、自然言語プロセッサなど、AI 技術を導入した複雑な製品やサービスが急増するにつれて、データセンター アクセラレーション プラットフォームを利用する処理機能の高速化が求められています。Vitis AI は、ザイリンクスの Alveo カードや独自のプラットフォームを使用して、高スループットかつ高効率の AI 推論を実現し、データセンターやクラウドで急速に進化する AI 技術に対応します。
 
AI オプティマイザーのブロック図
ビデオ

特集ビデオ

すべてのビデオ

デフォルト デフォルト タイトル 日付
開発を開始

開発を開始

ローカルで Vitis AI プラットフォームを使用する開発

ステップ 1: ハードウェア プラットフォームを設定する

ステップ 2:  Vitis AI 環境 GitHub からダウンロードしてインストールする

ステップ 3: VART や AI ライブラリを使用して Vitis AI 環境でサンプル デザインを実行する

ステップ 4: チュートリアルやビデオなどで詳細を確認する


開発の開始の詳細は、次のボタンをクリックしてください。

クラウドで Vitis AI プラットフォームを使用する開発

クラウド上で Vitis AI を使用してアクセラレーション アプリケーションを開発します。この場合、ローカル エリアにソフトウェアをインストールしたり、ハードウェア プラットフォームの事前購入が不要になります (従量課金制)。今すぐログインして開発を開始できます。


トレーニング コース


運用オプション