

Launching Industry's First 20nm Radiation Tolerant FPGA for Space Applications

Minal Sawant Space System Architect

May 19, 2020

Space Industry Market Challenges & Requirements

- Downlink Bandwidth is limited
- Fast time to market
 - Platform Concept for reuse on multiple missions

- Low Latency and High Bandwidth
 - E.g. Seamless and reliable connectivity for broadband communications

Machine Learning in orbit

- Need for capability to process on board a satellite vs ground station
 - Reduce Development Time to launch (2-3 years Vs 5-6 years)
 - Process hundreds of Gbps data streams in real time

- Flexible System Architecture
 - Change algorithms "on the fly"
- Reliable components for long mission life, extreme environments
- SWaP (Size, Weight and Power) Tradeoffs

Key Target Markets and Applications

For Reconfigurable Payloads

Communication Payloads

- Channelization
- Beamforming
- Phased Array Processing

Earth Observation Payloads

- Hyperspectral Cameras
- Synthetic Aperture Radar

Space 2.0 Constellations

- Broadband Internet
- High Speed Networks

Science Missions

- Display Modules
- Instruments
- Video Processing

Civil, Commercial & Defense Satellites

Signal Processing, HW/SW Reconfigurable, Robust Package, Space Grade Tested, On Orbit Flexible

Introducing the 20nm RT Kintex UltraScale FPGA

Building on 20+ Years of Heritage

Adaptive Computing for Ultra High Throughput, High Bandwidth Satellite Applications

- True Unlimited On-Orbit Reconfigurable Solution
- >10X DSP Compute increase for Processing Intensive Algorithms & Analytics
- Full Radiation Tolerance across All Orbits
- Machine Learning Ecosystem enables High Performance Edge Inference in Space

Radiation Tolerant Kintex UltraScale XQRKU060

Process, Analyze & Reconfigure

RT Kintex UltraScale Platform

High Bandwidth Compute Capability

Features

- 2760 DSP Slices: Multi-precision fixed and floating point modes
- > 32 High Speed SERDES (12.5Gbps): 400Gbps aggregate BW
- Radiation Tolerance across all orbits TID >100Krad/si, SEL >80MeV-cm²/mg
- Robust 40x40 mm Ceramic Column Grid Array Packaging

Meets Next Generation on Orbit Processing Needs

- Protos, Mechanical Samples: NOW
- Vivado SW, XPE*, Datasheet: NOW
- Production (Class B, Class Y): Sept 2020

*XPE Xilinx Power Estimator Tool TID = Total Ionizing Dose SEL = Single Event Latchup

Simplified Development Environment

Vivado Design Suite

Next Gen Routing

- Redesigned routing architecture
- > 2X routing resources, eliminates congestion

ASIC Like Clocking

Flexibility for clock placement & balances skews

Intelligent 3D Analytical Placer

 Optimizes timing, congestion and wire length for efficient design placement

Space Resilient

Radiation Tolerance & Reliability Across All Orbits

	Radiation		Unit	LEO, MEO, GEO, Polar, Deep Space
DEEP SPACE	Total Dose	>100 krad(si)		\checkmark
	Single Event Latchup	Single Event Latchup 80 MeV-cm		\checkmark
	SEU _{CRAM} SEU _{BRAM}	1 x 10 ⁻⁸ upset/bit/day 2.7 x 10 ⁻⁸ upset/bit/day		(with Mitigation)
and the second of the second				
	Silicon Reliability		Unit	
GEOSYNCHRONOUS ORBIT	20nm Family		<1.2 ppm	
MEDIUM EARTH ORBIT	Kintex Family		3.8 FIT >3M Device Hours	
	XQRKU060		Passed 4000 Hours Class Y (QML-Y Equivalent) per MIL-PRF38535 in Progress	
LOW EARTH ORBIT	Package XQRKU060 Reliability		Package XQR5QV Reliability	
12.000	CNA1509		CNA1752	
	Construction, Materials Similar			
			Heritage in Space since 2009	
			1	
	© Convright 20	120 Xiliny		1

Unlimited On Orbit Reconfiguration

Change-on-the-Fly Capability

Timing Control, Conversions, Filtering...

Bringing Machine Learning to Space

"Process and Analyze" with Real-Time On-Board Processing

- Dense, power-efficient compute with scalable precision and large on-chip memory
- 5.7 TOPs peak INT8 performance (nearly 25X compared to prior generation space grade FPGAs)
- Triple Modular Redundant MicroBlaze[™] supported by Xilinx Vitis[™] Tools for ML-centric applications

Machine Learning on RT Kintex UltraScale

High Performance Neural Network Inference Acceleration

- Available flows today via open source compilers (FINN, HLS4ML)
- Low-latency, high-throughput performance with customizable pre/post-processing for CNNs & MLPs
- Supported ML frameworks include TensorFlow, Keras, PyTorch and others
- Multi-precision network support
 - Optimized for INT8 and below
- Future extensions to Vitis[™] AI and Xilinx & Partner DPUs[†]

Payload Use Case with RT Kintex UltraScale

Reconfigurable Telecommunication Satellite

Allows Operators to Change and Adapt Frequency Plans, Channelization Bandwidths and Routing Uplinks to Specific Downlinks

Payload Use Case with Unlimited On-Orbit Reconfiguration

Reconfiguration Can Be Done by

- 1. Storage of multiple bitstreams in the Non Volatile memory
- 2. On-Board Computer (OBC)
- 3. Ground Station

An FPGA based on-board processor platform for space application""_Alexander Hofmann; Rainer Wansch; Robért Glein; Bernd Kollmannthaler, 2012 NASA/ESA Conference on Adaptive Hardware and Systems (AHS)

Ecosystem of Solutions

Available Today

Space Development Board	Alpha Data		
SRAM	Infineon Technologies		
NVM	Infineon, Cobham		
DDR3	3DPlus		
MCU	Cobham		
TMR Synthesis Tool	Mentor Graphics		
IP	Star Dundee		
Power Solutions	Texas Instrument		
High Speed ADC	Texas Instrument, Teledyne e2V		

RT Kintex UltraScale Product Table

	XQRV4QV	XQRV5QV	XQRKU060	
Radiation Hardness	Tolerant	Hard	Tolerant	
Process (nm)	90	65	20	
Memory (Mb)	4.1 to 9.9	12.3	38	
System Logic Cells (K)	55 to 200	131	726	
CLB Flip-Flops (K)	49.1 to 178.1	81.9	663	— 10)
CLB LUTs (K)	49.1 to 178.1	81.9	331	
MGTs	None	18 at 3.125 Gbps	32 at 12.5 Gbps	- 5X
User I/O	640 to 960	836	620	
DSP Slices	32 to 192	320	2,760	— 8X
Radiation (TID (krad/si), SEL (MeV cm ² /mg))	300, >125	1,000, >125	100, >80	
Reliability (Package, Test)	CNA1509; V-Flow	CNA 1752; B-Flow & V- Flow	CNA 1509; B-Flow & Y-Flow	

20nm UltraScale in Reconfigurable Platform

Baselined in Application

- **Company:** SEAKR Engineering, Inc. Colorado
- Product: Reconfigurable Processor
- FPGA: 20nm UltraScale KU060

- Function: Interconnected with 12 Gbps SERDES links enabling high-throughput, flexible and reconfigurable modulation, demodulation, channelization and routing capability.
- Application: GEO SatCom

https://www.seakr.com/seakr-announces-new-rf-reconfigurable-processor-for-space-platforms/

Future Rollout for Space Applications

© Copyright 2020 Xilinx

Strong Adoption and Heritage for 20+ Years

© Copyright 2020 Xilinx

Industry's First 20nm Radiation Tolerant (RT) FPGA Targeted for Ultra High Throughput & High Bandwidth Satellite Applications

True Unlimited On-Orbit Reconfiguration to Enable "Change-on-the-Fly" Capability in All Orbits Across Space

Complete Solution to "Process and Analyze" for Real Time On-Board Processing including Machine Learning

Thank You

© Copyright 2020 Xilinx