ALL PROGRAMMABLE

All Programmable: from Silicon to System

Ivo Bolsens, Senior Vice President & CTO

© Copyright 2012 Xilinx

Moore's Law: The Technology Pipeline

LOGIC DEVICE ROADMAP

Industry Debates Variability

ETimes IMEC looks at variability beyond 10 nm Anne-Françoise PELE

6/1/2012 5:10 PM EDT

PARIS – CMOS technology scaling will go on for the foreseeable future but, as we enter the 10nm node, process complexity reduction and variability control will become crucial and drive technology decisions, said An Steegen, senior vice president process technology at Imec, at the annual IMEC Technology Forum last week at the Square meeting center in Brussels, Belgium.

VARIABILITY IMPACT 14nm BULK FINFET CASE

© Copyright 2012 Xilinx

STATE NX > ALL PROGRAMMABLE.

Nothing New: Power Challenge

Multi-Core

Source: Intel

Page 5

Nothing New: Productivity Gap

ESL Design Flow IP Re-Use

Source: SEMATECH

© Copyright 2012 Xilinx

Nothing New: I/O Bandwidth Gap

Multi-Gigabit SerDes

"Doubt is not an agreeable condition, but certainty is absurd."

> François-Marie Arouet de Voltaire, French Philosopher

Photo Source: Wikipedia Page 8

"Don't believe everything you read on the Internet."

> Abraham Lincoln, U.S. President

Photo Source: Wikipedia Page 9

Extending and Leveraging Moore's Law

>Add Value : Programmable System Integration

- -Programmability
- -3D Integration

Collaborate

- -Supply Chain
 - Wider more Complexity
 - Deeper earlier Engagement
- -From System to Silicon

Value of Programmability: Configurability

Partial Reconfiguration

-Time-multiplexing hardware

> Lower Power

Value of Programmability: I/O

Value of Programmability: GOPS/Watt

From 100 Watt to 2 Watt 10x Performance Acceleration

© Copyright 2012 Xilinx

Future Challenge: HW + SW co-design

Exploit Parallelism and Heterogeneity

© Copyright 2012 Xilinx

XILINX ➤ ALL PROGRAMMABLE.

3D Integration: Add Value

XILINX ➤ ALL PROGRAMMABLE.

Value of 3D Integration: Bandwidth/Watt

Value of 3D Integration: Cost/Gate

Multiple Small Die Slices

Greater capacity, faster yield ramp

XILINX > ALL PROGRAMMABLE.

Value of 3D Integration: Heterogeneous ICs

Mixed functions

Mixed processes

Value of 3D Integration: Heterogeneous ICs

- Highest bandwidth FPGA with 2.78 Tb/s serial connectivity
- Electrically-isolated 28G transceivers for optimal signal integrity

Value of 3D Integration: Lower Power

Silicon Interposer with 28nm FPGA Slices 7 Series Static Power vs. Logic Cells at Tj=85C and Max Process 28 nm FPGA Slice 18.0 16.0 28 nm FPGA Slice 14.0 Max Static Power 12.0 28 nm FPGA Slice 10.0 8.0 28 nm FPGA Slice 6.0 Virtex-7 Monolithic 4.0 – Our Virtex-7 Multi-Slice 2.0 0.0 500 2000 0 1000 1500 Very Leaky LCs/1000 B С Slow Fast

3D Integration: Challenges Ahead

Improve Cost

- -Wafer backside processing is complicated
- "Device quality" wafers used for interposers
- KGD methodologies still emerging

Scalability

- Micro-bump scaling is limited
- Super-sized interposers.
- Improve TSV aspect ratio

Design Support

- Multi-die analysis without Multi-mode
 Multi-corner explosion
- Thermal modeling based on vertical hotspots

XILINX > ALL PROGRAMMABLE

3D Integration: Industry Call-to-Action

Design Enablement

- Models
- 3D Process Development Kit

Manufacturing Standards

- DFM rules for TSV, μ-bump
- Materials TSV, µ-bump
- Thermal budget

Test

- Test HW
- Known-good-die method
- µ-bump probing
- Burn-in bare die

Interoperability of Silicon

- Thin wafer handling
- Shipping methods
- Chip-to-chip interfaces

Supply Chain Collaboration: Early Engagement

© Copyright 2012 Xilinx

Supply Chain Collaboration: Early Engagement

28nm Process Technology

XILINX ➤ ALL PROGRAMMABLE...

Supply Chain Collaboration: Product Ramp Up

Continuous, early feedback loop for initial ramping Enables accelerated learning – days vs. months

© Copyright 2012 Xilinx

Supply Chain Collaboration: Mutual Benefit

> FPGA architecture drives yield & quality improvements

The FPGA is a powerful yield learning vehicle with multiple layers of programmable features

Defect Reduction: quick to detect defects If you can't find it, you can't fix it Process Control: powerful to measure variations If you can't measure it, you can't improve it

Supply Chain 1998 - 2010

Today's Supply Chain

Wider and Deeper

© Copyright 2012 Xilinx

SXILINX > ALL PROGRAMMABLE.

From Silicon to System

© Copyright 2012 Xilinx

Conclusions

Moore's Law:

- From mostly cost reduction to more value-based innovation
- >System figure of merit defines value
- >Xilinx programmable system integration
 - Programmability
 - 3D integration
- > Supply chain partnerships to enable
 - Efficiency
 - Standardization
 - Innovation

What Xilinx Makes Possible:

ALL PROGRAMMABLE

ALL Programmable Electronic Systems
ALL Programmable Technologies

ALL Programmable Devices

XILINX ➤ ALL PROGRAMMABLE.

Follow Xilinx

facebook.com/XilinxInc

twitter.com/#!/XilinxInc

youtube.com/XilinxInc

