
BENCHMARK RESULTS

What is Netty.io?
Netty is a Java NIO (non-blocking I/O) based asynchronous event-driven network application framework for rapid
development of maintainable high performance protocol servers and clients. It greatly simplifies and streamlines
network programming such as TCP and UDP socket server. The design features include a unified API for various
transport types – blocking and non-blocking socket; based on flexible and extensible event model which allows
clear separation of concerns; a highly customizable thread model – single thread, one or more thread pools such as
SEDA; and true connectionless datagram socket support. The performance features include better throughput, lower
latency; less resource consumption; and minimized unnecessary memory copy.

Netty.io Running with Onload®
Sees a 70% Performance Gain

Key Observations from Performance Testing

•	 Solarflare’s Onload delivers a 70% performance gain
on average for Netty with NIO with persistent TCP
connections using GET transactions with 128-byte
response payload size when using 25GbE with 40
Netty instances.

•	 When processing GET requests using 40 or fewer
Netty instances Onload on 25GbE outperforms Netty
utilizing the kernel communications stack with a
25GbE connection.

•	 We soon reach the limits of the Netty application or
the physical system under test. If we look at 25GbE
with Onload we can see that the link reaches a
maximum of 2.4 million requests per second.

Why Netty Benefits from Kernel Bypass

Since Netty is network intensive, every request includes network processing overhead. Whenever an application like
Netty touches hardware, other than the CPU or memory, and in this case the network, it must make at least one, and
sometimes several calls to the operating system kernel. Each request is additional overhead that requires both CPU
cycles and processing time. Solarflare’s Onload moves the network processing required by Netty from the kernel into
Netty’s own application space in memory. This single modification improves the performance of Netty by 70% on
average as can be seen in the graph.

Description of Test Platforms

For this testing we used two Dell EMC
PowerEdge R640 with two dual socket Intel
Xeon systems labeled “SFSDR640A” and
“SFSDR640B”, and two production networks,
25GbE and 100GbE, connected back-to-back.
The “SFSDR640A” system was used as the
Client and the “SFSDR640B” system was used
as the Server. Both systems had two Gold
6148 CPUs clocked at 2.40GHz with 20 cores
per processor, 98GB of memory, and two
Solarflare network cards: X2522-25G dual
port 25GbE and an X2541 single port 100GbE.
This enables us to test performance against
a range of shipping Solarflare adapters as
shown above.

BENCHMARK RESULTS

1 GbE

25 GbE

100 GbE

Dell PowerEdge
R640 (SF SDR640A)

Dell PowerEdge
R640 (SF SDR640B)

X2522X2522

X2541X2541

Tuning Configuration

Here are the changes we made to the standard install
beyond simply leveraging Onload.

•	 Enable polling/spinning EF_POLL_USEC to 20 which
causes Onload to busy wait for up to 20us before
blocking when the application makes a blocking call
such as recv() or poll().

•	 Prevent spinning inside socket calls by enabling the
following to 0

•	 Enable EF_PKT_WAIT_SPIN to 0

•	 Enable EF_TCP_RECV_SPIN to 0

•	 Enable EF_TCP_SEND_SPIN to 0

•	 Enable EF_TCP_CONNECT_SPIN to 0

•	 Enable EF_TCP_ACCEPT_SPIN to 0

•	 Enable EF_UDP_RECV_SPIN to 0

•	 Enable EF_UDP_SEND_SPIN to 0

•	 Enable EF_UL_EPOLL to 3 and EF_EPOLL_MT_SAFE to
1 which provides the best scalability and speed.

•	 Enable EF_RXQ_SIZE to 4096

•	 Enable EF_HIGH_THROUGHPUT_MODE which
enables receive event batching to improve
transaction rate/efficiency.

•	 Disable EF_CTPIO and EF_PIO as these reduce CPU
efficiency

For more information please visit:
solarflare.com

Contact Us:
US +1 949 581 6830
UK +44 (0) 1223 477171
HK +852 2624 8868
Email: sales@solarflare.com

Observations

Netty relies on the operating system’s communications
stack to process network I/O requests, but in high core
count environments, this stack has become the new
bottleneck. Here are some additional points to consider:

•	 Netty with Onload can service up to 2.4 million Get
requests/second, while Netty using the operating
system kernel can only handle 1.4 million Get
requests/second, a 70% improvement.

•	 Therefore, Netty with Onload can potentially reduce
your capex by 70%. In simple terms every two Netty
servers leveraging Onload can service the same
number of requests as three Netty servers using the
standard Linux kernel.

Copyright © 2019 Xilinx, Inc. Onload and all other designated brands included herein are trademarks of Xilinx in the United States and other
countries. All other trademarks are property of their respective owners.

SF-122198-CD Issue 3
Netty.io Benchmark Results 112219

•	 Conversely, adding Onload and a Solarflare 25GbE or
100GbE NIC to existing servers will provide additional
headroom for growth or unanticipated business
peaks as shown above.

For More Testing Details

Check out Onload Netty.io Cookbook for the exact
installation and testing process along with the specific
tuning and tweaking commands executed above.

BENCHMARK RESULTS

The above benefit statements are the result of benchmarking designed to focus on the value of optimizing networking through Onload
kernel bypass. Real world use cases are not the same as benchmarks and as such the role that networking plays may vary, so your overall
measurable benefits may be different.

